Microwave-Assisted Pyrolysis of Biomass with and without Use of Catalyst in a Fluidised Bed Reactor: A Review

Author:

Mohabeer ChetnaORCID,Guilhaume Nolven,Laurenti Dorothée,Schuurman YvesORCID

Abstract

Lignocellulosic biomass and waste, such as plastics, represent an abundant resource today, and they can be converted thermo-chemically into energy in a refinery. Existing research works on catalytic and non-catalytic pyrolysis performed in thermally-heated reactors have been reviewed in this text, along with those performed in microwave-heated ones. Thermally-heated reactors, albeit being the most commonly used, present various drawbacks such as superficial heating, high thermal inertia and slow response times. That is why microwave-assisted pyrolysis (MAP) appears to be a very promising technology, even if the process does present some technical drawbacks as well such as the formation of hot spots. The different types of catalysts used during the process and their impacts have also been examined in the text. More specifically, studies conducted in fluidised bed reactors (FBR) have been detailed and their advantages and drawbacks discussed. Finally, future prospects of MAP have been briefly presented.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3