Abstract
Installations of an Energy Storage System (ESS) with various functions such as power stabilization of renewable energy, demand management, and frequency adjustment are increasing. In particular, ESS for demand management is being established for high-voltage customers (300 KVA–1000 KVA) who have placed an Auto Section Switch (ASS) at the connection point within the distribution system. However, a power outage may occur in the Power Receiving System (PRS) when a short-circuit fault due to insulation breakdown occurs at the ESS DC side. The reason for this breakdown is that the fault current is reduced by transformer impedance, and the ASS is opened before the DC power fuse. Therefore, using the Graphic Solution Method (GSM), this paper presents an operation algorithm for protection coordination that isolates the fault section by first operating the DC power fuse with a small fault current. Furthermore, fault analysis modeling for a PRS composed of a switchgear section, a main distribution panel, a Power Conditioning System (PCS), a power fuse, and a battery is performed through PSCAD/EMTDC. From the simulation results, it is confirmed that the fault section is quickly isolated, and power outages for high-voltage customers are prevented because the DC power fuse selected by the proposed operation algorithm of protection coordination is opened before the ASS.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference21 articles.
1. Will the Use of Renewable Energy in the Enterprise Expand: 185 Companies Worldwide Including Google GM Apple_Government, October Green Support for Joining RE100, Including the Introduction of a New System
http://www.keaj.kr/news/articleView.html?idxno=2834
2. The Economic Effects of the New and Renewable Energies Sector
3. ESS Utilization and Related PCS Technology;Park,2017
4. Extensive analysis of fault response and extracting fault features for DC microgrids