Operation Algorithm for Protection Coordination Device in High-Voltage Customer with ESS for Demand Management

Author:

Choi Sung-MoonORCID,Han Byeong-GillORCID,Kim Mi-Young,Rho Dae-Seok

Abstract

Installations of an Energy Storage System (ESS) with various functions such as power stabilization of renewable energy, demand management, and frequency adjustment are increasing. In particular, ESS for demand management is being established for high-voltage customers (300 KVA–1000 KVA) who have placed an Auto Section Switch (ASS) at the connection point within the distribution system. However, a power outage may occur in the Power Receiving System (PRS) when a short-circuit fault due to insulation breakdown occurs at the ESS DC side. The reason for this breakdown is that the fault current is reduced by transformer impedance, and the ASS is opened before the DC power fuse. Therefore, using the Graphic Solution Method (GSM), this paper presents an operation algorithm for protection coordination that isolates the fault section by first operating the DC power fuse with a small fault current. Furthermore, fault analysis modeling for a PRS composed of a switchgear section, a main distribution panel, a Power Conditioning System (PCS), a power fuse, and a battery is performed through PSCAD/EMTDC. From the simulation results, it is confirmed that the fault section is quickly isolated, and power outages for high-voltage customers are prevented because the DC power fuse selected by the proposed operation algorithm of protection coordination is opened before the ASS.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference21 articles.

1. Will the Use of Renewable Energy in the Enterprise Expand: 185 Companies Worldwide Including Google GM Apple_Government, October Green Support for Joining RE100, Including the Introduction of a New System http://www.keaj.kr/news/articleView.html?idxno=2834

2. The Economic Effects of the New and Renewable Energies Sector

3. ESS Utilization and Related PCS Technology;Park,2017

4. Extensive analysis of fault response and extracting fault features for DC microgrids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3