Interactions between Seismic Safety and Energy Efficiency for Masonry Infill Walls: A Shift of the Paradigm

Author:

Furtado AndréORCID,Rodrigues HugoORCID,Arêde AntónioORCID,Rodrigues FernandaORCID,Varum HumbertoORCID

Abstract

Currently, the upgrade of existing reinforced concrete (RC) buildings focuses only on energy retrofitting measures due to the current policies promoted in the scope of the European Green Deal. However, the structural deficiencies are not eliminated, leaving the building seriously unsafe despite the investment, particularly in seismic-prone regions. Moreover, the envelopes of existing RC buildings are responsible for their energy efficiency and seismic performance, but these two performance indicators are not usually correlated. They are frequently analyzed independently from each other. Based on this motivation, this research aimed to perform a holistic performance assessment of five different types of masonry infill walls (i.e., two non-strengthened walls, two walls with seismic strengthening, and one wall with energy strengthening). This performance assessment was performed in a three-step procedure: (i) energy performance assessment by analyzing the heat transfer coefficient of each wall type; (ii) seismic performance assessment by analyzing the out-of-plane seismic vulnerability; (iii) cost–benefit performance assessment. Therefore, a global analysis was performed, in which the different performance indicators (structural and energy) were evaluated. In addition, a state-of-the-art review regarding strengthening techniques (independent structural strengthening, independent energy strengthening, and combined structural plus energy strengthening) is provided. From this study, it was observed that the use of the external thermal insulation composite system reduced the heat transfer coefficient by about 77%. However, it reduced the wall strength capacity by about 9%. On the other hand, the use of textile-reinforced mortar improved the strength and deformation capacity by about 50% and 236%, but it did not sufficiently reduce the heat transfer coefficient. There is a need to combine both techniques to simultaneously improve the energy and structural energy performance parameters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference69 articles.

1. Boosting Building Renovation: What Potential and Value for Europe?,2016

2. Concurrent seismic and energy retrofitting of RC and masonry building envelopes using inorganic textile-based composites combined with insulation materials: A new concept

3. Directive of the European Parliament and of the Council on the Energy Performance of Buildings (Recast),2021

4. Communication from the Comission to the European Parliament: The European Economic and Social Committee and the Committee of the Regions,2019

5. A Renovation Wave for Europe—Greening Our Buildings, Creating Jobs, Improving Lives,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3