One Earth Climate Model—Integrated Energy Assessment Model to Develop Industry-Specific 1.5 °C Pathways with High Technical Resolution for the Finance Sector

Author:

Teske Sven,Guerrero Jaysson

Abstract

According to the IPCC, a global carbon budget of 400 GtCO2 is required to limit the temperature rise to 1.5 °C with a 67% likelihood by 2050. The finance industry is increasingly committed to ambitious climate targets. In this article, we describe the detailed methodology and energy model architecture of a MATLAB-based integrated energy assessment model for industry-specific 1.5 °C pathways, with a high technical resolution of target parameters as key performance indicators (KPIs). The additionality of OECM 2.0 is the high technical resolution in terms of the level of detail of industry-specific energy demand and supply parameters that can be modeled—a prerequisite to define industry-specific KPIs. We found that a database of industry-sector-specific energy demands and energy intensities, with a consistent methodology, is required to improve the accuracy of calculations in future research. We supplement the technical documentation with the results for a transport scenario.

Funder

European Climate Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Report of the Conference of the Parties on its Twenty-First Session,2015

2. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

3. Explainer: How ‘Shared Socioeconomic Pathways’ Explore Future Climate Changehttps://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change

4. A Detailed Overview and Consistent Classification of Climate-Economy Models;Nikas,2019

5. Better suited or just more complex? On the fit between user needs and modeller-driven improvements of energy system models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3