Machine Learning for Prediction of Heat Pipe Effectiveness

Author:

Nair Anish,P. RamkumarORCID,Mahadevan Sivasubramanian,Prakash ChanderORCID,Dixit Saurav,Murali Gunasekaran,Vatin Nikolai IvanovichORCID,Epifantsev Kirill,Kumar Kaushal

Abstract

This paper details the selection of machine learning models for predicting the effectiveness of a heat pipe system in a concentric tube exchanger. Heat exchanger experiments with methanol as the working fluid were conducted. The value of the angle varied from 0° to 90°, values of temperature varied from 50 °C to 70 °C, and the flow rate varied from 40 to 120 litres per min. Multiple experiments were conducted at different combinations of the input parameters and the effectiveness was measured for each trial. Multiple machine learning algorithms were taken into consideration for prediction. Experimental data were divided into subsets and the performance of the machine learning model was analysed for each of the subsets. For the overall analysis, which included all the three parameters, the random forest algorithm returned the best results with a mean average error of 1.176 and root-mean-square-error of 1.542.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3