IBM-LBM-DEM Study of Two-Particle Sedimentation: Drafting-Kissing-Tumbling and Effects of Particle Reynolds Number and Initial Positions of Particles

Author:

Li Xiaohui,Liu Guodong,Zhao Junnan,Yin XiaolongORCID,Lu HuilinORCID

Abstract

Particle sedimentation is a fundamental process encountered in various industrial applications. In this study, we used immersed boundary lattice Boltzmann method and discrete element method (IBM-LBM-DEM) to investigate two-particle sedimentation. A lattice Boltzmann method was used to simulate fluid flow, a discrete element method was used to simulate particle dynamics, and an immersed boundary method was used to handle particle–fluid interactions. Via the IBM-LBM-DEM, the particles collision process in fluid or between rigid walls can be calculated to capture the information of particles and the flow field more efficiently and accurately. The numerical method was verified by simulating settling of a single three-dimensional particle. Then, the effects of Reynolds number (Re), initial distance, and initial angle of particles on two-particle sedimentation were characterized. A specific focus was to reproduce, analyze, and define the well-known phenomenon of drafting-kissing-tumbling (DKT) interaction between two particles. Further kinematic analysis to define DKT is meaningful for two-particle sedimentation studies at different particle locations. Whether a pair of particles has experienced DKT can be viewed from time plots of the distance between the particles (for kissing), the second-order derivative of distance to time (for drafting), and angular velocities of particles (for tumbling). Simulation results show that DKT’s signatures, including attraction, (near) contact, rotation, and in the end, separation, is only completely demonstrated when particles have nearly vertically aligned initial positions. Hence, not all initial positions of particles and Reynolds numbers lead to DKT and not all particle–particle hydrodynamic interactions are DKT. Whether particle–particle interaction is attractive or repulsive depends on the relative positions of particles and Re. Collision occurs when Re is high and the initial angle is small (<20°), almost independent of the initial distance.

Funder

Interdisciplinary Research Foundation of HIT

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3