Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model

Author:

Wang Hao,Li Xiaogang,Zhu Jingyi,Yang Zhaozhong,Zhou Jie,Yi Liangping

Abstract

The pyrolysis characteristics of oil shale during heat treatment dominate the oil production of kerogen. In this study, the pyrolysis characteristics of oil shale in a laboratory microwave apparatus were investigated based on a novel fully coupled three-dimensional electromagnetic-thermal-chemical-hydraulic model according to the experimental microwave apparatus. By simulating the electric field, temperature distribution, and kerogen decomposition within oil shale subjected to microwave irradiation, several parameters, including waveguide, position, and power, were successfully optimized. The results indicated that the non-uniform temperature distribution was consistent with the distribution of the electric field. Double microwave ports were more effective than single ports in terms of heating rate and temperature uniformity. There was an optimal location where the highest heating efficiency was obtained, which was on the left of the cavity center. When irradiation was conducted over a range of microwave powers, a higher power was suitable for achieving a rapid temperature increase, whereas a lower power was suitable to gain a high efficiency of the pyrolysis rate. Therefore, a variable power heating mode was introduced to decrease the heating time and improve the heat uniformity simultaneously during oil shale pyrolysis. Specifically, the secondary reactions of oil products should be maximally avoided by controlling the microwave power.

Funder

China Postdoctoral Science Foundation

Scientific Research Starting Project of SWPU

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3