Abstract
Model-based and data-driven methods are commonly used in leak location strategies in water distribution networks. This paper formulates a hybrid methodology in two stages that complements the advantages and disadvantages of data-driven and model-based strategies. In the first stage, a support vector machine multiclass classifier is used to reduce the search space for the leak location task. In the second stage, leak location task is formulated as an inverse problem, and solved using a variation of the differential evolution algorithm called topological differential evolution. The robustness of the method is tested considering measurement and varying demand uncertainty conditions ranging from 5 to 15% of node nominal demands. The performance of the hybrid method is compared to the support vector machine classifier and topological differential evolution approaches as standalone methods of leak location. The hybrid proposal shows higher performance in terms of location accuracy, zone size, and computational load.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献