Is Anthropogenic Pyrodiversity Invisible in Paleofire Records?

Author:

Roos ,Williamson ,Bowman

Abstract

Paleofire studies frequently discount the impact of human activities in past fire regimes. Globally, we know that a common pattern of anthropogenic burning regimes is to burn many small patches at high frequency, thereby generating landscape heterogeneity. Is this type of anthropogenic pyrodiversity necessarily obscured in paleofire records because of fundamental limitations of those records? We evaluate this with a cellular automata model designed to replicate different fire regimes with identical fire rotations but different fire frequencies and patchiness. Our results indicate that high frequency patch burning can be identified in tree-ring records at relatively modest sampling intensities. However, standard methods that filter out fires represented by few trees systematically biases the records against patch burning. In simulated fire regime shifts, fading records, sample size, and the contrast between the shifted fire regimes all interact to make statistical identification of regime shifts challenging without other information. Recent studies indicate that integration of information from history, archaeology, or anthropology and paleofire data generate the most reliable inferences of anthropogenic patch burning and fire regime changes associated with cultural changes.

Funder

Australian Research Council

Samuel Taylor Fellowship

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference68 articles.

1. Fire in America. A Cultural History of Wildland and Rural Fire;Pyne,1982

2. From Fire to Flood;Dobyns,1981

3. Fire, Native Peoples, and the Natural Landscape,2002

4. Climate and human influences on global biomass burning over the past two millennia

5. Late Quaternary fire regimes of Australasia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3