Research Progress on Spatiotemporal Interpolation Methods for Meteorological Elements

Author:

Wang Yizhen1,Liu Xin1,Liu Riu1,Zhang Zhijie2

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

2. Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai 200032, China

Abstract

With the development of mathematical statistics, people have developed the spatiotemporal interpolation methods based on the spatial interpolation method or the temporal interpolation method. These methods fully consider the comprehensive effects of time series changes and spatial distribution to better handle complicated and changeable meteorological element data. This article systematically reviews the current research progress of spatiotemporal interpolation methods for spatiotemporal sampling data of meteorological origin. Spatiotemporal interpolation methods of meteorological elements are classified into three categories: spatiotemporal geostatistical interpolation methods, spatiotemporal deterministic interpolation methods, and spatiotemporal mixed interpolation methods. This article summarizes the theoretical concept and practical application of the spatiotemporal interpolation methods of meteorological elements, analyzes the advantages and disadvantages of using spatiotemporal interpolation methods for estimating or forecasting meteorological elements, combined through some measures and their application to explain the accuracy of the spatiotemporal interpolation methods; and discusses the problems and challenges of spatiotemporal interpolation. Finally, the future research focus of spatiotemporal interpolation methods is proposed. This article provides a valuable method reference for estimating or predicting meteorological elements such as precipitation in unsampled points.

Funder

National Natural Science Foundation of China

Autonomous and Controllable Special Project for Surveying and Mapping of China

Publisher

MDPI AG

Reference70 articles.

1. Spatial and temporal variability characteristics of precipitation in HUAI river basin during 1961~2005;Lu;Resour. Environ. Yangtze Basin,2011

2. Study on the summer precipitation spatial-temporal variation and influencing factors in Anhui Province in 1959–2017;Sun;J. Irrig. Drain.,2020

3. Alternative observation of ground stations by multiple satellite remote sensing precipitation in Alpine region;Xu;J. Northeast Agric. Univ.,2017

4. Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y., and Li, L. (2019). Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water, 11.

5. A novel imputation method of missing air temperature records based on merging Spatio-temporal Characteristics;Chen;Sci. Geogr. Sin.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3