Novel Video Surveillance-Based Fire and Smoke Classification Using Attentional Feature Map in Capsule Networks

Author:

Shakhnoza MuksimovaORCID,Sabina Umirzakova,Sevara Mardieva,Cho Young-ImORCID

Abstract

A fire is an extraordinary event that can damage property and have a notable effect on people’s lives. However, the early detection of smoke and fire has been identified as a challenge in many recent studies. Therefore, different solutions have been proposed to approach the timely detection of fire events and avoid human casualties. As a solution, we used an affordable visual detection system. This method is possibly effective because early fire detection is recognized. In most developed countries, CCTV surveillance systems are installed in almost every public location to take periodic images of a specific area. Notwithstanding, cameras are used under different types of ambient light, and they experience occlusions, distortions of view, and changes in the resulting images from different camera angles and the different seasons of the year, all of which affect the accuracy of currently established models. To address these problems, we developed an approach based on an attention feature map used in a capsule network designed to classify fire and smoke locations at different distances outdoors, given only an image of a single fire and smoke as input. The proposed model was designed to solve two main limitations of the base capsule network input and the analysis of large-sized images, as well as to compensate the absence of a deep network using an attention-based approach to improve the classification of the fire and smoke results. In term of practicality, our method is comparable with prior strategies based on machine learning and deep learning methods. We trained and tested the proposed model using our datasets collected from different sources. As the results indicate, a high classification accuracy in comparison with other modern architectures was achieved. Further, the results indicate that the proposed approach is robust and stable for the classification of images from outdoor CCTV cameras with different viewpoints given the presence of smoke and fire.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. The Total Cost of Fire in the United States;Jun,2017

2. Fire Loss in the United States During 2020https://www.nfpa.org//-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/osFireLoss.pdf

3. Number of Installed CCTV Cameras in Public Places South Korea 2013−2020https://www.statista.com/statistics/651509/south-korea-cctv-cameras/

4. Conditional effects of open-street closed-circuit television (CCTV) on crime: A case from Korea

5. Real-Time Anomaly Recognition Through CCTV Using Neural Networks

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3