Identification of the Optimal Position of a Nasal Oxygen Cannula for Apneic Oxygenation: A Technical Simulation

Author:

Wetsch Wolfgang A.ORCID,Schroeder Daniel C.,Herff Susanne J.,Böttiger Bernd W.,Wenzel Volker,Herff HolgerORCID

Abstract

Background: In a cannot-ventilate-cannot-intubate situation, careful preoxygenation with high FiO2 allowing subsequent apneic oxygenation can be life-saving. The best position for an oxygen supply line within the human airway at which oxygen insufflation is more effective than standard preoxygenation with a face mask is unknown. Methods: In this experimental study, we compared the effectiveness of preoxygenation by placing an oxygen cannula at the nose entrance, through the nose at the soft palatine, or at the base of the tongue; as a control we used ambient air. We connected a fully preoxygenated test lung on one side to an oximeter with a flow rate of 200 mL/min simulating the oxygen consumption of a normal adult on the other side of the trachea of an anatomically correctly shaped airway manikin over a 20 min observation period five times for each cannula placement in a random order. Results: The oxygen percentage in the test lung dropped from 100% in all groups to 53 ± 1% in the ambient air control group, to 87 ± 2% in the nasal cannula group, and to 96 ± 2% in the soft palatine group; it remained at 99 ± 1% in the base of the tongue group (p = 0.003 for the soft palatine vs. base of the tongue and p < 0.001 for all other groups). Conclusions: When simulating apneic oxygenation in a preoxygenated manikin, oxygen insufflation at the base of the tongue kept the oxygen percentage at baseline values of 99%, demonstrating a complete block of ambient air flowing into the airway of the manikin. Oxygen insufflation at the soft palatine or insufflation via a nasal cannula were less effective regarding this effect.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3