Assessment of Thigh MRI Radiomics and Clinical Characteristics for Assisting in Discrimination of Juvenile Dermatomyositis

Author:

Hu Minfei,Zheng Fei,Ma Xiaohui,Liu Linke,Shen Chencong,Wu Jianqiang,Wang Chaoying,Yang Li,Xu Yiping,Zou Lixia,Fei Ling,Lu MeipingORCID,Xu XuefengORCID

Abstract

Magnetic resonance imaging (MRI) is an important non-invasive examination in the early diagnosis of juvenile dermatomyositis (JDM). We aimed to evaluate the feasibility of radiomics to establish a quantitative analysis of MRI images. Radiomics and machine learning were used to retrospectively analyze MRI T2 fat suppression sequences and relevant clinical data. The model associated with radiomics features was established using a cohort of patients who underwent thigh MRI at the children’s hospital from June 2014 to September 2021. In total, 75 patients with JDM and 75 control children were included in the training cohort (n = 102) and validation cohort (n = 48). The independent factors including lower muscle strength (OR, 0.75; 95% CI, 0.59–0.90), higher creatine kinase (CK) level (OR, 1.65; 95% CI, 1.20–2.38), and higher radiomics score (OR, 2.30; 95% CI, 1.63–3.62) were associated with a clinical diagnosis of JDM. The combined model achieved good discrimination performance compared the radiomics score model under linear discriminant analyses in the training cohort (AUC, 0.949; 95% CI, 0.912–0.986 vs. AUC, 0.912; 95% CI, 0.858–0.967; p = 0.02) and in the validation cohort (AUC, 0.945; 95% CI, 0.878–1 vs. AUC, 0.905; 95% CI, 0.812–0.998; p = 0.03). The combined model showed the diagnostic value was not weaker than the biopsy (AUC, 0.950; 95% CI, 0.919–0.981, n = 150 vs. AUC, 0.952; 95% CI, 0.889–1, n = 72; p = 0.95) and electromyogram (EMG) (AUC, 0.950; 95% CI, 0.919–0.981 vs. AUC, 0.900; 95% CI, 0.852–0.948; p = 0.10) among all the patients. The combination of radiomics features extracted from the MRI and non-invasive clinical characteristics obtained a pronounced discriminative performance to assist in discriminating JDM.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3