Abstract
Studying the theoretical properties of optimization algorithms such as genetic algorithms and evolutionary strategies allows us to determine when they are suitable for solving a particular type of optimization problem. Such a study consists of three main steps. The first step is considering such algorithms as Stochastic Global Optimization Algorithms (SGoals ), i.e., iterative algorithm that applies stochastic operations to a set of candidate solutions. The second step is to define a formal characterization of the iterative process in terms of measure theory and define some of such stochastic operations as stationary Markov kernels (defined in terms of transition probabilities that do not change over time). The third step is to characterize non-stationary SGoals, i.e., SGoals having stochastic operations with transition probabilities that may change over time. In this paper, we develop the third step of this study. First, we generalize the sufficient conditions convergence from stationary to non-stationary Markov processes. Second, we introduce the necessary theory to define kernels for arithmetic operations between measurable functions. Third, we develop Markov kernels for some selection and recombination schemes. Finally, we formalize the simulated annealing algorithm and evolutionary strategies using the systematic formal approach.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Reference36 articles.
1. On the class of hybrid adaptive evolutionary algorithms (chavela)
2. Stochastic Global Optimization: A Review on the Occasion of 25 Years of Informatica
3. Global Optimization;Törn,1989
4. The application of Bayesian methods for seeking the extremum;Mockus;Towards Glob. Optim.,1978
5. Function extremum search with the use of information maximum principle;Neimark;Autom. Remote Control,1966
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献