Non-Stationary Stochastic Global Optimization Algorithms

Author:

Gomez Jonatan,Rivera AndresORCID

Abstract

Studying the theoretical properties of optimization algorithms such as genetic algorithms and evolutionary strategies allows us to determine when they are suitable for solving a particular type of optimization problem. Such a study consists of three main steps. The first step is considering such algorithms as Stochastic Global Optimization Algorithms (SGoals ), i.e., iterative algorithm that applies stochastic operations to a set of candidate solutions. The second step is to define a formal characterization of the iterative process in terms of measure theory and define some of such stochastic operations as stationary Markov kernels (defined in terms of transition probabilities that do not change over time). The third step is to characterize non-stationary SGoals, i.e., SGoals having stochastic operations with transition probabilities that may change over time. In this paper, we develop the third step of this study. First, we generalize the sufficient conditions convergence from stationary to non-stationary Markov processes. Second, we introduce the necessary theory to define kernels for arithmetic operations between measurable functions. Third, we develop Markov kernels for some selection and recombination schemes. Finally, we formalize the simulated annealing algorithm and evolutionary strategies using the systematic formal approach.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference36 articles.

1. On the class of hybrid adaptive evolutionary algorithms (chavela)

2. Stochastic Global Optimization: A Review on the Occasion of 25 Years of Informatica

3. Global Optimization;Törn,1989

4. The application of Bayesian methods for seeking the extremum;Mockus;Towards Glob. Optim.,1978

5. Function extremum search with the use of information maximum principle;Neimark;Autom. Remote Control,1966

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3