Abstract
Total hip metal arthroplasty (THA) constitutes an important proportion of the standard clinical hip implant usage in Medical Physics and Biomedical Engineering. A computational nonlinear optimization is performed with two commonly metal materials in Metal-on-Metal (MoM) THA. Namely, Cast Co-Cr Alloy and Titanium. The principal result is the numerical determination of the K adimensional-constant parameter of the model. Results from a new more powerful algorithm than previous contributions, show significant improvements. Numerical standard figures for dual optimization give acceptable model-parameter values with low residuals. These results are demonstrated with 2D and 3D Graphical/Interior Optimization also. According to the findings/calculations, the standard optimized metal-model parameters are mathematically proven and verified. Mathematical consequences are obtained for model improvements and in vitro simulation methodology. The wear magnitude for in vitro determinations with these model parameter data constitute the innovation of the method. In consequence, the erosion prediction for laboratory experimental testing in THA adds valuable information to the literature. Applications lead to medical physics improvements for material/metal-THA designs.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献