Comparing the Effectiveness of Robust Statistical Estimators of Proficiency Testing Schemes in Outlier Detection

Author:

Tsamatsoulis Dimitris1

Affiliation:

1. Halyps Building Materials S.A., Heidelberg Materials, 17th Km Nat. Rd. Athens—Korinth, 19300 Aspropyrgos, Greece

Abstract

This study investigates the effectiveness of robust estimators of location and dispersion, used in proficiency testing and listed in ISO 13528:2015, in outlier detection. The models utilize (a) kernel density plots, (b) Z-factors, (c) Monte Carlo simulations, and (d) distributions derived from at most two contaminating distributions and one main Gaussian. The simulation parameters cover a wide range of those commonly encountered in proficiency testing (PT) schemes, so the results presented are of fairly general application. We chose a functional sub-optimal solution by grouping and classifying the model settings, resulting in five matrices readily usable for selecting the best robust estimator. Whenever at most half of the distribution of each contaminating population is outside the central distribution, there is only one optimal estimator. For all other cases, the five matrices provide the appropriate robust statistic. The proposed method applies to 95.1% of 144 results for an existing PT for cement. These actual datasets indicate that the Hampel estimator for the mean and the Q-method for the standard deviation provide the most appropriate performance statistic in 86.1% of the cases.

Publisher

MDPI AG

Subject

Materials Science (miscellaneous)

Reference42 articles.

1. (1994). Conformity Assessment—General Requirements for Proficiency Testing (Standard No. EN ISO/IEC 17043:2010).

2. Hampel, F.R., Ronchetti, E.M., Peter, J., Rousseeuw, P.J., and Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons, Inc.

3. Huber, P.J., and Ronchetti, E.M. (2009). Robust Statistics, John Wiley & Sons, Inc.. [2nd ed.].

4. Wilcox, R. (2013). Introduction to Robust Estimation and Hypothesis Testing, Elsevier, Inc.. [3rd ed.].

5. Maronna, R.A., Martin, R.D., Yohai, V.J., and Salibián-Barrera, M. (2018). Robust Statistics: Theory and Methods (with R), John Wiley & Sons, Inc.. [2nd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3