Leg-Joint Angle Estimation from a Single Inertial Sensor Attached to Various Lower-Body Links during Walking Motion

Author:

Alemayoh Tsige Tadesse1ORCID,Lee Jae Hoon1ORCID,Okamoto Shingo1

Affiliation:

1. Department of Mechanical Engineering, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan

Abstract

Gait analysis is important in a variety of applications such as animation, healthcare, and virtual reality. So far, high-cost experimental setups employing special cameras, markers, and multiple wearable sensors have been used for indoor human pose-tracking and gait-analysis purposes. Since locomotive activities such as walking are rhythmic and exhibit a kinematically constrained motion, fewer wearable sensors can be employed for gait and pose analysis. One of the core parts of gait analysis and pose-tracking is lower-limb-joint angle estimation. Therefore, this study proposes a neural network-based lower-limb-joint angle-estimation method from a single inertial sensor unit. As proof of concept, four different neural-network models were investigated, including bidirectional long short-term memory (BLSTM), convolutional neural network, wavelet neural network, and unidirectional LSTM. Not only could the selected network affect the estimation results, but also the sensor placement. Hence, the waist, thigh, shank, and foot were selected as candidate inertial sensor positions. From these inertial sensors, two sets of lower-limb-joint angles were estimated. One set contains only four sagittal-plane leg-joint angles, while the second includes six sagittal-plane leg-joint angles and two coronal-plane leg-joint angles. After the assessment of different combinations of networks and datasets, the BLSTM network with either shank or thigh inertial datasets performed well for both joint-angle sets. Hence, the shank and thigh parts are the better candidates for a single inertial sensor-based leg-joint estimation. Consequently, a mean absolute error (MAE) of 3.65° and 5.32° for the four-joint-angle set and the eight-joint-angle set were obtained, respectively. Additionally, the actual leg motion was compared to a computer-generated simulation of the predicted leg joints, which proved the possibility of estimating leg-joint angles during walking with a single inertial sensor unit.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3