Inversion Analysis of the In Situ Stress Field around Underground Caverns Based on Particle Swarm Optimization Optimized Back Propagation Neural Network

Author:

Yan Hong-Chuan1ORCID,Liu Huai-Zhong1,Li Yao2,Zhuo Li1,Xiao Ming-Li1,Chen Ke-Pu2,Wu Jia-Ming1,Pei Jian-Liang1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

2. Sinohydro Bureau 7 Co., Ltd., Chengdu 610213, China

Abstract

The in situ stress distribution is one of the driving factors for the design and construction of underground engineering. Numerical analysis methods based on artificial neural networks are the most common and effective methods for in situ stress inversion. However, conventional algorithms often have some drawbacks, such as slow convergence, overfitting, and the local minimum problem, which will directly affect the inversion results. An intelligent inverse method optimizing the back-propagation (BP) neural network with the particle swarm optimization algorithm (PSO) is applied to the back analysis of in situ stress. The PSO algorithm is used to optimize the initial parameters of the BP neural network, improving the stability and accuracy of the inversion results. The numerical simulation is utilized to calculate the stress field and generate training samples. In the application of the Shuangjiangkou Hydropower Station underground powerhouse, the average relative error decreases by about 3.45% by using the proposed method compared with the BP method. Subsequently, the in situ stress distribution shows the significant tectonic movement of the surrounding rock, with the first principal stress value of 20 to 26 MPa. The fault and the lamprophyre significantly influence the in situ stress, with 15–30% localized stress reduction in the rock mass within 10 m. The research results demonstrate the reliability and improvement of the proposed method and provide a reference for similar underground engineering.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3