A Novel MPPT Based Reptile Search Algorithm for Photovoltaic System under Various Conditions

Author:

Douifi Nadia1ORCID,Abbadi Amel2ORCID,Hamidia Fethia2,Yahya Khalid3ORCID,Mohamed Mahmoud4ORCID,Rai Nawal1ORCID

Affiliation:

1. Advanced Electronic Systems Laboratory (AESL), Electrical Engineering Department, Faculty of Technology, Dr. Yahia Fares University, Medea 26000, Algeria

2. Electrical Engineering and Automatic Laboratory (EEAL), Electrical Engineering Department, Faculty of Technology, Dr. Yahia Fares University, Medea 26000, Algeria

3. Department of Electrical and Electronics Engineering, Nisantasi University, Istanbul 34467, Turkey

4. School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

Abstract

Solar systems connected to the grid are crucial in addressing the global energy crisis and meeting rising energy demand. The efficiency of these systems is totally impacted by varying weather conditions such as changes in irradiance and temperature throughout the day. Additionally, partial shading (PS) adds to the complexity of the nonlinear characteristics of photovoltaic (PV) systems, leading to significant power loss. To address this issue, maximum power point tracking (MPPT) algorithms have become an essential component in PV systems to ensure optimal power extraction. This paper introduces a new MPPT control technique based on a novel reptile search optimization algorithm (RSA). The effectiveness of the proposed RSA method is evaluated under different weather conditions with varying irradiance and partial shading. The results of the RSA algorithm are compared to other existing bio-inspired algorithms and show superior performance with an average efficiency of 99.91%, faster dynamic response of 50 ms, and less than 20 watts of oscillation. The RSA-MPPT based technique provides higher efficiency, faster settling time, and minimal oscillation around the maximum power point (MPP), making it a reliable solution for effective solar power harvesting.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3