Transverse Connectivity and Durability Evaluation of Hollow Slab Bridges Using Surface Damage and Neural Networks: Field Test Investigation

Author:

Jiang Chao1,Xiong Wen1ORCID,Wang Zichen1,Cai Chunsheng12ORCID,Yang Juan3

Affiliation:

1. Department of Bridge Engineering, Southeast University, Nanjing 211189, China

2. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

3. Nanjing Third Yangtze River Bridge Co., Ltd., Nanjing 211808, China

Abstract

Prefabricated concrete hollow slab bridges are widely used in short- and medium-span highway bridges in China due to the advantages of high production quality, installation convenience, and low construction cost. Field investigation shows that severe hinge joint damage occurred during the service life, and mechanical performance of the bridges also deteriorated with the weakened joints. It is important to accurately evaluate the performance of hollow slab bridges to ensure the safety of the highway system. In this paper, transverse connectivity and durability of the concrete hollow slab bridges are investigated in a field test using the surface damage and neural networks. Hollow slab bridges in the Wu-He highway system were taken as the background bridge. Surface damage was visually checked and statistically analyzed. Static load test was conducted to evaluate the transverse connectivity of the hinge joints based on the girder responses. The hollow slab bridges were then demolished, and a total of 75 concrete girder segments were cut off. Durability of the girders was evaluated based on the conditions of concrete and rebars, and the analytic hierarchy process along with the fuzzy comprehensive evaluation method was employed. Results showed that there were two main types of the defects in the hollow slab bridges, i.e., the transverse cracks on the bottom plates of the girders and the longitudinal cracks in the hinge joints. The distribution of the deflection of each girder was non-uniform due to the weakening of the transverse connectivity, and the girders in the background bridges were within the moderate deterioration condition after 25 years’ service life. An evaluation method of the hollow slab girders using the neural networks and surface damage was verified by the field test data. The maximum crack width at different locations of the bridges was used in the input layer of the neural network, and the hinge joint damage or the durability was considered as the output results. The prediction error of the method in the test set was within 15.0% for the hinge joint damage and within 40% for the durability result of the girder, indicating the feasibility of the evaluation method.

Funder

National Science Foundation of China

Key Research and Development Program of Jiangsu Province of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3