Generalised Performance Estimation in Novel Hybrid MPC Architectures: Modeling the CONWIP Flow-Shop System

Author:

Vespoli Silvestro1ORCID,Grassi Andrea2ORCID,Guizzi Guido2ORCID,Popolo Valentina3ORCID

Affiliation:

1. Facoltà di Scienze Giuridiche ed Economiche, Università Telematica Pegaso, 00186 Rome, Italy

2. Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy

3. Jirama S.r.l., Via Medina, 5, 80133 Napoli, Italy

Abstract

The ability to supply increasingly individualized market demand in a short period of time while maintaining costs to a bare minimum might be considered a vital factor for industrialized countries’ competitive revival. Despite significant advances in the field of Industry 4.0, there is still an open gap in the literature regarding advanced methodologies for production planning and control. Among different production and control approaches, hybrid architectures are gaining huge interest in the literature. For such architectures to operate at their best, reliable models for performance prediction of the supervised production system are required. In an effort to advance the development of hybrid architecture, this paper develops a model able to predict the performance of the controlled system when it is structured as a controlled work-in-progress (CONWIP) flow-shop with generalized stochastic processing times. To achieve this, we employed a simulation tool using both discrete-event and agent-based simulation techniques, which was then utilized to generate data for training a deep learning neural network. This network was proposed for estimating the throughput of a balanced system, together with a normalization method to generalize the approach. The results showed that the developed estimation tool outperforms the best-known approximated mathematical models while allowing one-shot training of the network. Finally, the paper develops preliminary insights about generalized performance estimation for unbalanced lines.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3