Object-Tracking Algorithm Combining Motion Direction and Time Series

Author:

Su Jianjun1,Wu Chenmou2,Yang Shuqun1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Department of Computer Science & Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

Object tracking using deep learning is a crucial research direction within intelligent vision processing. One of the key challenges in object tracking is accurately predicting the object’s motion direction in consecutive frames while accounting for the reliability of the tracking results during template updates. In this work, we propose an innovative object-tracking algorithm that leverages both motion direction and time series information. We propose a loss function that guides the tracking model to learn the direction of object motion between consecutive frames, resulting in improved object localization accuracy. Furthermore, to enhance the algorithm’s ability to discriminate the reliability of tracking results and improve the quality of template updates, the proposed approach includes an attention mechanism-based tracking result reliability scoring module, which takes into account the time series of tracking results. Compressive experiment evaluation on four datasets shows our algorithm effectively improves the performances of object tracking. The ablation experiments and qualitative analysis prove the effectiveness of the proposed module and loss function.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3