Development and Characterization of Ibrutinib-Loaded Ethylcellulose-Based Nanosponges: Cytotoxicity Assay against MCF-7 Cell Lines

Author:

Fatima Farhat1ORCID,Anwer Md. Khalid1ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia

Abstract

Ibrutinib (ITB) is a specific and novel irreversible inhibitor of Bruton’s tyrosine kinase enzyme, for which reason it exhibits potential chemotherapeutic effects against a few types of B-cell cancers. The objective of this study was to design and characterize the targeted anti-cancer moiety of ITB encapsulated in polymeric nanosponges (IBNS 1-5). The IBNSs were fabricated using the ultrasonication-assisted solvent evaporation technique. They were optimized for robust nanocarriers by varying the ratio of ethylcellulose (50–200 mg), using a constant amount 50 mg of polyvinyl alcohol ((PVA) stabilizer), and drug ITB. Optimized INBS4 containing 50 mg of ITB, PVA, and 162.5 mg of EC was prepared and was studied for anti-cancer potential. Particle analysis and EE and DL calculation of optimized IBNS4 were 640.9 nm, 0.35, −30.2 mV in size, PDI, and ζp, respectively. Physicochemical characterization (FTIR and DSC) studies of IBNS4 showed that the drug was compatible with excipients, and was encapsulated properly within the core of nanosponges. In vitro drug release studies revealed that IBNS4 followed the Higuchi matrix model with anomalous non-Fickian release kinetics. The in vitro diffusion study of I-NS4 exhibited sustained release for 24 h. Enhanced cytotoxicity effects against the MCF-7 observed with the developed NSs (IBNS4) showed 1.96 times more cytotoxic potential compared to the pure drug (ITB).

Funder

Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3