GIS-Based Identification of Locations in Water Distribution Networks Vulnerable to Leakage

Author:

Alzarooni Eisa1,Ali Tarig2ORCID,Atabay Serter2ORCID,Yilmaz Abdullah Gokhan3ORCID,Mortula Md. Maruf2ORCID,Fattah Kazi Parvez2ORCID,Khan Zahid2ORCID

Affiliation:

1. Dubai Electricity and Water Authority (DEWA), Dubai P.O. Box 564, United Arab Emirates

2. Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

3. Department of Engineering, La Trobe University, Melbourne, VIC 3086, Australia

Abstract

The detection of leakages in Water Distribution Networks (WDNs) is usually challenging and identifying their locations may take a long time. Current water leak detection methods such as model-based and measurement-based approaches face significant limitations that impact response times, resource requirements, accuracy, and location identification. This paper presents a method for determining locations in the WDNs that are vulnerable to leakage by combining six leakage-conditioning factors using logistic regression and vulnerability analysis. The proposed model considered three fixed physical factors (pipe length per junction, number of fittings per length, and pipe friction factor) and three varying operational aspects (drop in pressure, decrease in flow, and variations in chlorine levels). The model performance was validated using 13 district metered areas (DMAs) of the Sharjah Electricity and Water Authority (SEWA) WDN using ArcGIS. Each of the six conditioning factors was assigned a weight that reflects its contribution to leakage in the WDNs based on the Analytic Hierarchy Process (AHP) method. The highest weight was set to 0.25 for both pressure and flow, while 0.2 and 0.14 were set for the chlorine and number of fittings per length, respectively. The minimum weight was set to 0.08 for both length per junction and friction factor. When the model runs, it produces vulnerability to leakage maps, which indicate the DMAs’ vulnerability classes ranging from very high to very low. Real-world data and different scenarios were used to validate the method, and the areas vulnerable to leakage were successfully identified based on fixed physical and varying operational factors. This vulnerability map will provide a comprehensive understanding of the risks facing a system and help stakeholders develop and implement strategies to mitigate the leakage. Therefore, water utility companies can employ this method for corrective maintenance activities and daily operations. The proposed approach can offer a valuable tool for reducing water production costs and increasing the efficiency of WDN.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3