Predicting Reservoir Petrophysical Geobodies from Seismic Data Using Enhanced Extended Elastic Impedance Inversion

Author:

Purnomo Eko Widi1,Abdul Latiff Abdul Halim1ORCID,Elsaadany Mohamed M. Abdo Aly1

Affiliation:

1. Center for Subsurface Imaging (CSI), Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia

Abstract

The study aims to implement a high-resolution Extended Elastic Impedance (EEI) inversion to estimate the petrophysical properties (e.g., porosity, saturation and volume of shale) from seismic and well log data. The inversion resolves the pitfall of basic EEI inversion in inverting below-tuning seismic data. The resolution, dimensionality and absolute value of basic EEI inversion are improved by employing stochastic perturbation constrained by integrated energy spectra attribute in a Bayesian Markov Chain Monte Carlo framework. A general regression neural network (GRNN) is trained to learn and memorize the relationship between the stochastically perturbed EEI and the associated well petrophysical log data. The trained GRNN is then used to predict the petrophysical properties of any given stochastic processed EEI. The proposed inversion was successfully conducted to invert the volume of shale, porosity and water saturation of a 4.0 m thick gas sand reservoir in Sarawak Basin, Malaysia. The three petrophysical geobodies were successfully built using the discovery wells cut-off values, showing that the inverted petrophysical properties satisfactorily reconstruct the well petrophysical logs with sufficient resolution and an accurate absolute value at the well site and are laterally conformable with seismic data. Inversion provides reliable petrophysical properties prediction that potentially helps further reservoir development for the study field.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3