Orthomosaicking Thermal Drone Images of Forests via Simultaneously Acquired RGB Images

Author:

Kapil Rudraksh12ORCID,Castilla Guillermo3ORCID,Marvasti-Zadeh Seyed Mojtaba2ORCID,Goodsman Devin3,Erbilgin Nadir2ORCID,Ray Nilanjan1ORCID

Affiliation:

1. Department of Computing Science, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB T6G 2R3, Canada

2. Department of Renewable Resources, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB T6G 2R3, Canada

3. Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 122 Street NW, Edmonton, AB T6H 3S5, Canada

Abstract

Operational forest monitoring often requires fine-detail information in the form of an orthomosaic, created by stitching overlapping nadir images captured by aerial platforms such as drones. RGB drone sensors are commonly used for low-cost, high-resolution imaging that is conducive to effective orthomosaicking, but only capture visible light. Thermal sensors, on the other hand, capture long-wave infrared radiation, which is useful for early pest detection among other applications. However, these lower-resolution images suffer from reduced contrast and lack of descriptive features for successful orthomosaicking, leading to gaps or swirling artifacts in the orthomosaic. To tackle this, we propose a thermal orthomosaicking workflow that leverages simultaneously acquired RGB images. The latter are used for producing a surface mesh via structure from motion, while thermal images are only used to texture this mesh and yield a thermal orthomosaic. Prior to texturing, RGB-thermal image pairs are co-registered using an affine transformation derived from a machine learning technique. On average, the individual RGB and thermal images achieve a mutual information of 0.2787 after co-registration using our technique, compared to 0.0591 before co-registration, and 0.1934 using manual co-registration. We show that the thermal orthomosaic generated from our workflow (1) is of better quality than other existing methods, (2) is geometrically aligned with the RGB orthomosaic, (3) preserves radiometric information (i.e., surface temperatures) from the original thermal imagery, and (4) enables easy transfer of downstream tasks—such as tree crown detection from the RGB to the thermal orthomosaic. We also provide an open-source tool that implements our workflow to facilitate usage and further development.

Funder

fRI Research-Mountain Pine Beetle Ecology Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3