Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda

Author:

Gutkin Nick12,Uwizeyimana Valens1ORCID,Somers Ben1ORCID,Muys Bart1ORCID,Verbist Bruno1

Affiliation:

1. Division of Forest, Nature and Landscape, KU Leuven, 3000 Leuven, Belgium

2. Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium

Abstract

Eastern Rwanda consists of a mosaic of different land cover types, with agroforestry, forest patches, and shrubland all containing tree cover. Mapping and monitoring the landscape is costly and time-intensive, creating a need for automated methods using openly available satellite imagery. Google Earth Engine and the random forests algorithm offer the potential to use such imagery to map tree cover types in the study area. Sentinel-2 satellite imagery, along with vegetation indices, texture metrics, principal components, and non-spectral layers were combined over the dry and rainy seasons. Different combinations of input bands were used to classify land cover types in the study area. Recursive feature elimination was used to select the most important input features for accurate classification, with three final models selected for classification. The highest classification accuracies were obtained for the forest class (85–92%) followed by shrubland (77–81%) and agroforestry (68–77%). Agroforestry cover was predicted for 36% of the study area, forest cover was predicted for 14% of the study area, and shrubland cover was predicted for 18% of the study area. Non-spectral layers and texture metrics were among the most important features for accurate classification. Mixed pixels and fragmented tree patches presented challenges for the accurate delineation of some tree cover types, resulting in some discrepancies with other studies. Nonetheless, the methods used in this study were capable of delivering accurate results across the study area using freely available satellite imagery and methods that are not costly and are easy to apply in future studies.

Funder

Development of Smart Innovation through Research in Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3