A Deep-Learning Scheme for Hydrometeor Type Classification Using Passive Microwave Observations

Author:

Chen Ruiyao1ORCID,Bennartz Ralf1

Affiliation:

1. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37215, USA

Abstract

This paper proposes a novel approach for hydrometeor classification using passive microwave observations. The use of passive measurements for this purpose has not been extensively explored, despite being available for over four decades. We utilize the Micro-Wave Humidity Sounder-2 (MWHS-2) to relate microwave brightness temperatures to hydrometeor types derived from the global precipitation measurement’s (GPM) dual-frequency precipitation radar (DPR), which are classified into liquid, mixed, and ice phases. To achieve this, we utilize a convolutional neural network model with an attention mechanism that learns feature representations of MWHS-2 observations from spatial and temporal dimensions. The proposed algorithm classified hydrometeors with 84.7% accuracy using testing data and captured the geographical characteristics of hydrometeor types well in most areas, especially for frozen precipitation. We then evaluated our results by comparing predictions from a different year against DPR retrievals seasonally and globally. Our global annual cycles of precipitation occurrences largely agreed with DPR retrievals with biases being 8.4%, −11.8%, and 3.4%, respectively. Our approach provides a promising direction for utilizing passive microwave observations and deep-learning techniques in hydrometeor classification, with potential applications in the time-resolved observations of precipitation structure and storm intensity with a constellation of smallsats (TROPICS) algorithm development.

Funder

NASA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3