A Novel Forest EcoSpatial Network for Carbon Stocking Using Complex Network Theory in the Yellow River Basin

Author:

Zhang Huiqing1,Lin Simei1,Yu Qiang1,Gao Ge1,Xu Chenglong1,Huang Huaguo1ORCID

Affiliation:

1. State Forestry and Grassland Administration Key Laboratory of Forest Resources & Environmental Management, Beijing Forestry University, Beijing 100083, China

Abstract

The Yellow River Basin serves as a crucial ecological barrier in China, emphasizing the importance of accurately examining the spatial distribution of forest carbon stocks and enhancing carbon sequestration in order to attain “carbon peaking and carbon neutrality”. Forest patches have complex interactions that impact ecosystem services. To our knowledge, very few studies have explored the connection between these interactions and carbon stock. This study addressed this gap by utilizing complex network theory to establish a forest ecospatial network (ForEcoNet) in the Yellow River Basin in which forest patches are represented as nodes (sources) and their interactions as edges (corridors). Our objective was to optimize the ForEcoNet’s structure and enhance forest carbon stocks. First, we employed downscaling technology to allocate the forest carbon stocks of the 69 cities in the study area to grid cells, generating a spatial distribution map of forest carbon density in the Yellow River Basin. Next, we conducted morphological spatial pattern analysis (MSPA) and used the minimum cumulative resistance model (MCR) to extract the ForEcoNet in the basin. Finally, we proposed optimization of the ForEcoNet based on the coupling coordination between the node carbon stock and topological structure. The results showed that: (1) the forest carbon stocks of the upper, middle, and lower reaches accounted for 42.35%, 54.28%, and 3.37% of the total, respectively, (2) the ForEcoNet exhibited characteristics of both a random network and a scale-free network and demonstrated poor network stability, and (3) through the introduction of 51 sources and 46 corridors, we optimized the network and significantly improved its robustness. These findings provide scientific recommendations for the optimization of forest allocation in the Yellow River Basin and achieving the goal of increasing the forest carbon stock.

Funder

National Key R&D Program of China

Chinese Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Challenges and Opportunities for Carbon Neutrality in China;Liu;Nat. Rev. Earth Environ.,2021

2. Future Earth and Sustainable Developments;Cheng;Innovation,2020

3. The Biota and the World Carbon Budget;Woodwell;Sci. New Ser.,1978

4. Soil Carbon Pools and World Life Zones;Post;Nature,1982

5. Carbon Dioxide Concentration, Photosynthesis, and Dry Matter Production;Kramer;BioScience,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3