Cotton Seedling Detection and Counting Based on UAV Multispectral Images and Deep Learning Methods

Author:

Feng Yingxiang1,Chen Wei1,Ma Yiru1,Zhang Ze1ORCID,Gao Pan2ORCID,Lv Xin1

Affiliation:

1. Xinjiang Production and Construction Crops Oasis Eco-Agriculture Key Laboratory, College of Agriculture, Shihezi University, Shihezi 832003, China

2. College of Information Science and Technology, Shihezi University, Shihezi 832003, China

Abstract

Cotton is one of the most important cash crops in Xinjiang, and timely seedling inspection and replenishment at the seedling stage are essential for cotton’s late production management and yield formation. The background conditions of the cotton seedling stage are complex and variable, and deep learning methods are widely used to extract target objects from the complex background. Therefore, this study takes seedling cotton as the research object and uses three deep learning algorithms, YOLOv5, YOLOv7, and CenterNet, for cotton seedling detection and counting using images at six different times of the cotton seedling period based on multispectral images collected by UAVs to develop a model applicable to the whole cotton seedling period. The results showed that when tested with data collected at different times, YOLOv7 performed better overall in detection and counting, and the T4 dataset performed better in each test set. Precision, Recall, and F1-Score values with the best test results were 96.9%, 96.6%, and 96.7%, respectively, and the R2, RMSE, and RRMSE indexes were 0.94, 3.83, and 2.72%, respectively. In conclusion, the UAV multispectral images acquired about 23 days after cotton sowing (T4) with the YOLOv7 algorithm achieved rapid and accurate seedling detection and counting throughout the cotton seedling stage.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3