Advances in the Application of Small Unoccupied Aircraft Systems (sUAS) for High-Throughput Plant Phenotyping

Author:

Ayankojo Ibukun T.1ORCID,Thorp Kelly R.2ORCID,Thompson Alison L.3

Affiliation:

1. Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Verona, MS 38879, USA

2. USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA

3. USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, USA

Abstract

High-throughput plant phenotyping (HTPP) involves the application of modern information technologies to evaluate the effects of genetics, environment, and management on the expression of plant traits in plant breeding programs. In recent years, HTPP has been advanced via sensors mounted on terrestrial vehicles and small unoccupied aircraft systems (sUAS) to estimate plant phenotypes in several crops. Previous reviews have summarized these recent advances, but the accuracy of estimation across traits, platforms, crops, and sensors has not been fully established. Therefore, the objectives of this review were to (1) identify the advantages and limitations of terrestrial and sUAS platforms for HTPP, (2) summarize the different imaging techniques and image processing methods used for HTPP, (3) describe individual plant traits that have been quantified using sUAS, (4) summarize the different imaging techniques and image processing methods used for HTPP, and (5) compare the accuracy of estimation among traits, platforms, crops, and sensors. A literature survey was conducted using the Web of ScienceTM Core Collection Database (THOMSON REUTERSTM) to retrieve articles focused on HTPP research. A total of 205 articles were obtained and reviewed using the Google search engine. Based on the information gathered from the literature, in terms of flexibility and ease of operation, sUAS technology is a more practical and cost-effective solution for rapid HTPP at field scale level (>2 ha) compared to terrestrial platforms. Of all the various plant traits or phenotypes, plant growth traits (height, LAI, canopy cover, etc.) were studied most often, while RGB and multispectral sensors were most often deployed aboard sUAS in HTPP research. Sensor performance for estimating crop traits tended to vary according to the chosen platform and crop trait of interest. Regardless of sensor type, the prediction accuracies for crop trait extraction (across multiple crops) were similar for both sUAS and terrestrial platforms; however, yield prediction from sUAS platforms was more accurate compared to terrestrial phenotyping platforms. This review presents a useful guide for researchers in the HTPP community on appropriately matching their traits of interest with the most suitable sensor and platform.

Funder

Agricultural Research Service

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3