Cooperating and Competing Digital Twins for Industrie 4.0 in Urban Planning Contexts

Author:

Herzog Otthein12ORCID,Jarke Matthias3ORCID,Wu Siegfried Zhiqiang1

Affiliation:

1. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

2. Department of Mathematics and Informatics, University of Bremen, 28359 Bremen, Germany

3. Databases and Information Systems, Rheinisch-Westfaelische Hochschule Aachen, 52056 Aachen, Germany

Abstract

Digital twins are emerging as a prime analysis, prediction, and control concepts for enabling the Industrie 4.0 vision of cyber-physical production systems (CPPSs). Today’s growing complexity and volatility cannot be handled by monolithic digital twins but require a fundamentally decentralized paradigm of cooperating digital twins. Moreover, societal trends such as worldwide urbanization and growing emphasis on sustainability highlight competing goals that must be reflected not just in cooperating but also competing digital twins, often even interacting in “coopetition”. This paper argues for multi-agent systems (MASs) to address this challenge, using the example of embedding industrial digital twins into an urban planning context. We provide a technical discussion of suitable MAS frameworks and interaction protocols; data architecture options for efficient data supply from heterogeneous sensor streams and sovereignty in data sharing; and strategic analysis for scoping a digital twin systems design among domain experts and decision makers. To illustrate the way still in front of research and practice, the paper reviews some success stories of MASs in Industrie/Logistics 4.0 settings and sketches a comprehensive vision for digital twin-based holistic urban planning.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Multidisciplinary

Reference76 articles.

1. Wahlster, W. (2013). SemProM: Foundations of Product Memories for the Internet of Production, Springer.

2. Big data in product lifecycle management;Li;Int. J. Adv. Manuf. Technol.,2015

3. Bergsjö, D. (2013). Product Lifecycle Management: Architectural and Organizational Perspectives, Chalmers University of Technology.

4. Grieves, M. (2014). Digital Twin—Maintaining Excellence through Virtual Factory Replication, White Paper, Florida Institute of Technology.

5. van Dyck, M. (2022). Emergence, Evolution, and Management of Innovation Ecosystems. [Ph.D. Thesis, RWTH Aachen].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3