Numerical Representation of Groundwater-Surface Water Exchange and the Effect on Streamflow Contribution Estimates

Author:

Karan SachinORCID,Jacobsen MartinORCID,Kazmierczak Jolanta,Reyna-Gutiérrez José A.,Breum Thomas,Engesgaard PeterORCID

Abstract

The effects of streams and drainage representation in 3D numerical catchment scale models on estimated streamflow contribution were investigated. MODFLOW-USG was used to represent complex geology and a stream network with two different conceptualizations—one with equal cell discretization in the entire model domain and another with refined cell discretization along stream reaches. Both models were calibrated against a large data set including hydraulic heads and streamflow measurements. Though the optimized hydraulic parameters and statistical performance of both model conceptualizations were comparable, their estimated streamflow contribution differed substantially. In the conceptualization with equal cell discretization, the drainage contribution to the streamflow was 13% compared to 41% in the conceptualization with refined cell discretization. The increase in drainage contribution to streamflow was attributed to the increase in drainage area in proximity to the stream reaches arising from the refined discretization. e.g., the cell refinement along stream reaches reduced the area occupied by stream cells allowing for increased drain area adjacent to the stream reaches. As such, an increase in drainage area equivalent to 7% yielded a 146% increase in drainage contribution to streamflow. In-stream field measurements of groundwater-surface water exchange fluxes that were qualitatively compared to calculated fluxes from the models indicated that estimates from the refined model discretization were more representative. Hence, the results of this study accentuate the importance of being able to represent stream and drain flow contribution correctly, that is, to achieve representative exchange fluxes that are crucial in simulating groundwater–surface water exchange of both flow and solute transport in catchment scale modeling. To that end, the in-stream measurements of exchange fluxes showed the potential to serve as a proxy to numerically estimate drainage contribution that is not readily available at the catchment scale.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3