An X-ray Absorption Near-Edge Structure (XANES) Study on the Oxidation State of Chromophores in Natural Kunzite Samples from Nuristan, Afghanistan

Author:

Rehman Habib Ur,Martens Gerhard,Tsai Ying Lai,Chankhantha Chawalit,Kidkhunthod Pinit,H. Shen AndyORCID

Abstract

Kunzite, the pink variety of spodumene is famous and desirable among gemstone lovers. Due to its tenebrescent properties, kunzite always remains a hot research candidate among physicists and mineralogists. The present work is continuing the effort towards value addition to kunzite by enhancing its color using different treatments. Before color enhancement, it is essential to identify the chromophores and their oxidation states. In this paper, the authors investigated the main impurities in natural kunzite from the Nuristan area in Afghanistan and their valence states. Some impurities in the LiAlSi2O6 spodumene structure were identified and quantified by using sensitive techniques, including Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), UV−VIS and X-ray absorption near-edge structure (XANES). LA-ICP-MS indicated many trace elements as impurities in kunzite, among which Fe and Mn are the main elements responsible for coloration. The oxidation states of these two transition elements were determined by the XANES technique. The study reveals that Mn is present in both Mn2+ and Mn3+ oxidation states, while Fe is present only in Fe3+ oxidation state.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference31 articles.

1. Thermoluminescent Mechanism in Lilac Spodumene

2. Characterization of α-spodumene to OSL dosimetry

3. Luminescence spectroscopy of Cr3+ and Mn2+ in spodumene (LiAlSi2O6)

4. UV optical absorption spectra analysis of spodumene crystals from Brazil

5. High-temperature crystal chemistry of acmite, diopside, hedenbergite jadeite, spodumene and ureyite;Cameron;Am. Mineral. J. Earth Planet. Mater.,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3