A Comprehensive Review of Rare Earth Elements Recovery from Coal-Related Materials

Author:

Zhang Wencai,Noble Aaron,Yang Xinbo,Honaker Rick

Abstract

Many studies have been published in recent years focusing on the recovery of rare earth elements (REEs) from coal-related materials, including coal, coal refuse, coal mine drainage, and coal combustion byproducts particularly fly ash. The scientific basis and technology development have been supported by coal geologists and extractive metallurgists, and through these efforts, the concept has progressed from feasibility assessment to pilot-scale production over the last five years. Physical beneficiation, acid leaching, ion-exchange leaching, bio-leaching, thermal treatment, alkali treatment, solvent extraction, and other recovery technologies have been evaluated with varying degrees of success depending on the feedstock properties. In general, physical beneficiation can be a suitable low-cost option for preliminary upgrading; however, most studies showed exceedingly low recovery values unless ultrafine grinding was first performed. This finding is largely attributed to the combination of small RE-bearing mineral particle size and complex REE mineralogy in coal-based resources. Alternatively, direct chemical extraction by acid was able to produce moderate recovery values, and the inclusion of leaching additives, alkaline pretreatment, and/or thermal pretreatment considerably improved the process performance. The studies reviewed in this article revealed two major pilot plants where these processes have been successfully deployed along with suitable solution purification technologies to continuously produce high-grade mixed rare earth products (as high as +95%) from coal-based resources. This article presents a systematic review of the recovery methods, testing outcomes, and separation mechanisms that are involved in REE extraction from coal-related materials. The most recent findings regarding the modes of occurrence of REEs in coal-related materials are also included.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference146 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3