Effect of a SO2 Rich Atmosphere on Tempera Paint Mock-Ups. Part 2: Accelerated Aging of Azurite- and Malachite-Based Paints

Author:

Pozo-Antonio Jose SantiagoORCID,Cardell CarolinaORCID,Barral Diana,Dionisio AmeliaORCID,Rivas Teresa

Abstract

In order to improve our knowledge of the weathering response of tempera paints exposed to an industrial atmosphere, azurite- and malachite-based paint mock-ups prepared with either rabbit glue or egg yolk binders were artificially aged in an SO2 rich atmosphere. The aim was to identify the different alteration mechanisms and forms of degradation in the paints by observing their physical (color, gloss, reflectance, and roughness), mineralogical, chemical, and micro-textural characteristics. Superficial physical changes were evaluated by stereomicroscopy, spectrophotometry, gloss measurement, hyperspectral imaging, and roughness measurements. Chemical and mineralogical changes were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with microanalysis (SEM-EDS), which was also used to evaluate the micro-texture of the paints. The differences between the fresh temperas were due mainly to the binder (egg yolk or rabbit glue) used in the paint mixture, which also played a crucial role in the different deterioration patterns in the artificially aged paint mock-ups. Thus, the egg yolk-based paints remained physically quite intact after SO2 exposure, although they suffered more significant chemical degradation, above all in the form of copious precipitation of Cu and Ca-rich sulfate salts and the subsequent yellowing of the egg yolk binder. The SO2 aged rabbit glue-based mock-ups showed microscopically important crack formation and binder loss and fewer sulfated salts precipitated on the surface of the paints.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3