Author:
Lin Lujun,Chen Renyi,Pang Zhenshan,Chen Hui,Xue Jianling,Jia Hongxiang
Abstract
The Hongnipo deposit, a newly discovered large copper deposit in the Kangdian copper belt, SW China, is hosted in the Paleoproterozoic Hekou Group. This deposit contains ~4200 Mt of Cu ores, with an average grade of 1.42 wt.% Cu. Orebodies occur mainly as stratiform, stratoid and lenticular forms. Mineralization consists predominantly of high grade vein-type ores and low grade laminated ores. Field relationships indicate vein-type mineralization crosscuts laminated mineralization and host rocks, indicating that there were at least two mineralization events during the formation of the deposit. Pyrite separates from the laminated ores yield a Rb-Sr isochron age of 1552 ± 80 Ma, with a highly radiogenic initial 87Sr/86Sr ratio of 0.71214 ± 0.00081, indicating a major contribution from the ore-hosting rocks. Sulfides from the laminated ores have δ34S values ranging from −1.8‰ to 11.4‰, with the vast majority in the range of 5.3‰ to 11.4‰, suggesting the mixed derivation of sulfur from seawater sulfates and magmatic fluids. Chalcopyrite separates from the vein-type ores have a Re-Os isochron age of 794.8 ± 7.9 Ma. The initial 187Os/188Os (2.8 ± 1.2) and γOs (+2202) values are slightly lower than the average values of continental crust, indicating a major metal source of the Hekou Group with minor mantle input. Sulfides from the vein-type ores have δ34S values that range from −10.3‰ to 4.0‰ and cluster between 0‰ to 2.2‰, which implies a significant contribution of magmatic-sourced sulfur with minor biogenic sulfur. Two major mineralization events have been identified. The Rb-Sr age of the laminated ores likely records a VMS mineralization event at ~1.6 Ga. The much younger Re-Os age is considered to represent the timing of an important mineralization event, which is likely related to the Neoproterozoic magmatism and/or metamorphism and represents a newly documented mineralization event to be targeted by exploration.
Funder
China Geological Survey
National Key Research and Development Program of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献