A Study of Temperature Effect on the Xanthate’s Performance during Chalcopyrite Flotation

Author:

An DongboORCID,Zhang Jinhong

Abstract

A multi-scale investigation was conducted to study the surface properties of xanthate-absorbed chalcopyrite at elevated temperature to understand the temperature effect on the xanthate’s performance during chalcopyrite flotation. Firstly, a macro-scale study was initiated to investigate the temperature effect on the hydrophobicity of mineral surface by means of contact angle measurement, Hallimond tube microflotation and lab flotation tests; secondly, a micro–scale study was conducted to clarify the temperature effect on the adsorption of chemicals on mineral surface employing an atomic force microscope (AFM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). In the experiments, pure chalcopyrite samples were used for contact angle measurement, Hallimond tube microflotation, AFM and FTIR; and copper ore samples (1.51% Cu, 5.88% Fe 0.029% Mo, 5.23% S in weight percentage) were used for lab flotation tests. FTIR spectra and AFM images showed that, when potassium amyl xanthate (PAX) was used as the collector in this study, oily dixanthogen was the main hydrophobic species on the chalcopyrite surface. The morphological change of dixanthogen patches at elevated temperatures has a more significant impact than changes in the amount of adsorption species. Increasing temperature within a certain range is beneficial for the collector’s performance by increasing flotation recovery.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3