Lp Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains

Author:

Ali Mohammed1ORCID,Al-Qassem Hussain2ORCID

Affiliation:

1. Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

2. Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha 2713, Qatar

Abstract

In this paper, we study the boundedness of rough Maximal integral operators along surfaces of revolution on product domains. For several classes of surfaces, we establish appropriate Lp bounds of these Maximal operators under the assumption Ω∈Lq(Sm−1×Sn−1) for some q>1, and then we employ these bounds along with Yano’s extrapolation argument to obtain the Lp boundedness of the aforementioned integral operators under a weaker condition in which Ω belongs to either the space Bq(0,2τ′−1)(Sm−1×Sn−1) or to the space L(logL)2/τ′(Sm−×Sn−1). Our results extend and improve many previously known results.

Publisher

MDPI AG

Reference36 articles.

1. A note on a class of rough maximal operators on product domains;Ding;J. Math. Anal. Appl.,1999

2. Maximal operators with rough kernels on product domains;J. Math. Anal. Appl.,2005

3. Lp estimates for a rough maximal operator on product spaces;J. Korean Math. Soc.,2005

4. Some maximal operators related to families of singular integral operators;Xu;Acta. Math. Sin.,2004

5. On the boundedness of a class of rough maximal operators on product spaces;Cheng;Hokkaido Math. J.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3