Predicting Typhoon Flood in Macau Using Dynamic Gaussian Bayesian Network and Surface Confluence Analysis

Author:

Zou Shujie1,Chu Chiawei1ORCID,Dai Weijun2,Shen Ning3,Ren Jia4,Ding Weiping5ORCID

Affiliation:

1. Faculty of Data Science, City University of Macau, Macau 999078, China

2. Artificial Intelligence College, Guangdong Polytechnic Institute, Guangzhou 510091, China

3. Department of Innovation, Technology and Entrepreneurship, United Arab Emirates University, Al Ain 15551, United Arab Emirates

4. School of Information and Communication Engineering, Hainan University, Haikou 570100, China

5. School of Information Science and Technology, Nantong University, Nantong 226000, China

Abstract

A typhoon passing through or making landfall in a coastal city may result in seawater intrusion and continuous rainfall, which may cause urban flooding. The urban flood disaster caused by a typhoon is a dynamic process that changes over time, and a dynamic Gaussian Bayesian network (DGBN) is used to model the time series events in this paper. The scene data generated by each typhoon are different, which means that each typhoon has different characteristics. This paper establishes multiple DGBNs based on the historical data of Macau flooding caused by multiple typhoons, and similar analysis is made between the scene data related to the current flooding to be predicted and the scene data of historical flooding. The DGBN most similar to the scene characteristics of the current flooding is selected as the predicting network of the current flooding. According to the topography, the influence of the surface confluence is considered, and the Manning formula analysis method is proposed. The Manning formula is combined with the DGBN to obtain the final prediction model, DGBN-m, which takes into account the effects of time series and non-time-series factors. The flooding data provided by the Macau Meteorological Bureau are used to carry out experiments, and it is proved that the proposed model can predict the flooding depth well in a specific area of Macau under the condition of a small amount of data and that the best predicting accuracy can reach 84%. Finally, generalization analysis is performed to further confirm the validity of the proposed model.

Funder

National Natural Science Foundation of China and Macau Science and Technology Development Joint Project

MOST-FDCT Joint Projects

Natural Science Characteristic Innovation Project of Guangdong General Universities

Heyuan Social Development Science and Technology Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3