Iteration-Based Temporal Subgridding Method for the Finite-Difference Time-Domain Algorithm

Author:

Xu Penglong1ORCID,Liu Jinjie2ORCID

Affiliation:

1. Mathematical Sciences Department, Lincoln University, Chester County, PA 19352, USA

2. Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA

Abstract

A novel temporal subgridding technique is proposed for the finite-difference time-domain (FDTD) method to solve two-dimensional Maxwell’s equations of electrodynamics in the TEz mode. Based on the subgridding FDTD algorithm with a separated spatial and temporal interface, our method focuses on the temporal subgridding region, as it is the main source of late-time instability. Different from other subgridding algorithms that work on the interpolation between coarse and fine meshes, our method stabilizes the solution by using iterative updating equations on the temporal coarse–fine mesh interface. This new method presents an alternative approach aimed at improving the stability of the subgridding technique without modifying the interpolation formulas. We numerically study the stability of the proposed algorithm via eigenvalue tests and by performing long-term simulations. We employ a refinement ratio of 2:1 in our study. Our findings indicate the stability of the conventional temporal subgridding FDTD algorithm with a magnetic field (Hz) interpolation. However, when electric fields (Ex and Ey) are utilized in interpolation, late-time instability occurs. In contrast, the proposed iteration-based method with an electric field interpolation appears to be stable. We further employ our method as the forward problem solver in the Through-the-Wall Radar (TWR) imaging application.

Funder

AFOSR

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3