Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims

Author:

Marambakuyana Walena Anesu1,Shongwe Sandile Charles1ORCID

Affiliation:

1. Department of Mathematical Statistics and Actuarial Science, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa

Abstract

This research provides a comprehensive analysis of two-component non-Gaussian composite models and mixture models for insurance claims data. These models have gained attraction in actuarial literature because they provide flexible methods for curve-fitting. We consider 256 composite models and 256 mixture models derived from 16 popular parametric distributions. The composite models are developed by piecing together two distributions at a threshold value, while the mixture models are developed as convex combinations of two distributions on the same domain. Two real insurance datasets from different industries are considered. Model selection criteria and risk metrics of the top 20 models in each category (composite/mixture) are provided by using the ‘single-best model’ approach. Finally, for each of the datasets, composite models seem to provide better risk estimates.

Publisher

MDPI AG

Reference32 articles.

1. Modeling actuarial data with a composite lognormal-Pareto model;Cooray;Scand. Actuar. J.,2007

2. On composite lognormal-Pareto models;Scollnik;Scand. Actuar. J.,2007

3. Composite Lognormal-Pareto model with random threshold;Pigeon;Scand. Actuar. J.,2010

4. New composite models for the Danish fire insurance data;Nadarajah;Scand. Actuar. J.,2012

5. An actuarial model based on the composite Weibull-Pareto distribution;Ciumara;Math. Rep.,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3