VL-Meta: Vision-Language Models for Multimodal Meta-Learning

Author:

Ma Han1ORCID,Fan Baoyu1ORCID,Ng Benjamin K.1,Lam Chan-Tong1ORCID

Affiliation:

1. Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China

Abstract

Multimodal learning is a promising area in artificial intelligence (AI) that can make the model understand different kinds of data. Existing works are trying to re-train a new model based on pre-trained models that requires much data, computation power, and time. However, it is difficult to achieve in low-resource or small-sample situations. Therefore, we propose VL-Meta, Vision Language Models for Multimodal Meta Learning. It (1) presents the vision-language mapper and multimodal fusion mapper, which are light model structures, to use the existing pre-trained models to make models understand images to language feature space and save training data, computation power, and time; (2) constructs the meta-task pool that can only use a small amount of data to construct enough training data and improve the generalization of the model to learn the data knowledge and task knowledge; (3) proposes the token-level training that can align inputs with the outputs during training to improve the model performance; and (4) adopts the multi-task fusion loss to learn the different abilities for the models. It achieves a good performance on the Visual Question Answering (VQA) task, which shows the feasibility and effectiveness of the model. This solution can help blind or visually impaired individuals obtain visual information.

Funder

Macao Polytechnic University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision language models in ophthalmology;Current Opinion in Ophthalmology;2024-08-27

2. VL-Few: Vision Language Alignment for Multimodal Few-Shot Meta Learning;Applied Sciences;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3