Dynamic Malware Mitigation Strategies for IoT Networks: A Mathematical Epidemiology Approach

Author:

Casado-Vara Roberto1ORCID,Severt Marcos2ORCID,Díaz-Longueira Antonio3ORCID,Rey Ángel Martín del4ORCID,Calvo-Rolle Jose Luis3ORCID

Affiliation:

1. Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Matemáticas y Computación, Escuela Politécnica Superior, Universidad de Burgos, Av. Cantabria s/n, 09006 Burgos, Spain

2. Department of Computer Sciences, Universidad de Salamanca, 37007 Salamanca, Spain

3. Department of Industrial Engineering, CTC, CITIC, University of A Coruña, Rúa Mendizábal, s/n, 15403 Ferrol, Spain

4. Department of Applied Mathematics, Universidad de Salamanca, 37007 Salamanca, Spain

Abstract

With the progress and evolution of the IoT, which has resulted in a rise in both the number of devices and their applications, there is a growing number of malware attacks with higher complexity. Countering the spread of malware in IoT networks is a vital aspect of cybersecurity, where mathematical modeling has proven to be a potent tool. In this study, we suggest an approach to enhance IoT security by installing security updates on IoT nodes. The proposed method employs a physically informed neural network to estimate parameters related to malware propagation. A numerical case study is conducted to evaluate the effectiveness of the mitigation strategy, and novel metrics are presented to test its efficacy. The findings suggest that the mitigation tactic involving the selection of nodes based on network characteristics is more effective than random node selection.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network Information Security Monitoring Under Artificial Intelligence Environment;International Journal of Information Security and Privacy;2024-06-06

2. A Review of the Weaponization of IoT: Security Threats and Countermeasures;2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3