The General Extended Adjacency Eigenvalues of Chain Graphs

Author:

Rather Bilal Ahmad1ORCID,Ganie Hilal A.2ORCID,Das Kinkar Chandra3ORCID,Shang Yilun4ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates

2. Department of School Education, Jammu and Kashmir Government, Srinagar 193404, Kashmir, India

3. Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

4. Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK

Abstract

In this article, we discuss the spectral properties of the general extended adjacency matrix for chain graphs. In particular, we discuss the eigenvalues of the general extended adjacency matrix of the chain graphs and obtain its general extended adjacency inertia. We obtain bounds for the largest and the smallest general extended adjacency eigenvalues and characterize the extremal graphs. We also obtain a lower bound for the spread of the general extended adjacency matrix. We characterize chain graphs with all the general extended adjacency eigenvalues being simple and chain graphs that are non-singular under the general extended adjacency matrix. Further, we determine the explicit formula for the determinant and the trace of the square of the general extended adjacency matrix of chain graphs. Finally, we discuss the energy of the general extended adjacency matrix and obtain some bounds for it. We characterize the extremal chain graphs attaining these bounds.

Funder

Korean Government

Publisher

MDPI AG

Reference54 articles.

1. Brouwer, A.E., and Haemers, W.H. (2010). Spectra of Graphs, Springer.

2. Cvetković, D., Doob, M., and Sachs, H. (1980). Spectra of Graphs—Theory and Application, Academic Press.

3. Cvetković, D.M., Rowlison, P., and Simić, S. (2010). An Introduction to Theory of Graph Spectra, Cambridge University Press. London Math. Society Student Text, 75.

4. On the spectral radius and energy of signless Laplacian matrix of digraph;Ganie;Heliyon,2022

5. Li, X., Shi, Y., and Gutman, I. (2012). Graph Energy, Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3