Datasets of Simulated Exhaled Aerosol Images from Normal and Diseased Lungs with Multi-Level Similarities for Neural Network Training/Testing and Continuous Learning

Author:

Talaat Mohamed1,Si Xiuhua2,Xi Jinxiang1ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA

2. Department of Mechanical Engineering, California Baptist University, Riverside, CA 92504, USA

Abstract

Although exhaled aerosols and their patterns may seem chaotic in appearance, they inherently contain information related to the underlying respiratory physiology and anatomy. This study presented a multi-level database of simulated exhaled aerosol images from both normal and diseased lungs. An anatomically accurate mouth-lung geometry extending to G9 was modified to model two stages of obstructions in small airways and physiology-based simulations were utilized to capture the fluid-particle dynamics and exhaled aerosol images from varying breath tests. The dataset was designed to test two performance metrics of convolutional neural network (CNN) models when used for transfer learning: interpolation and extrapolation. To this aim, three testing datasets with decreasing image similarities were developed (i.e., level 1, inbox, and outbox). Four network models (AlexNet, ResNet-50, MobileNet, and EfficientNet) were tested and the performances of all models decreased for the outbox test images, which were outside the design space. The effect of continuous learning was also assessed for each model by adding new images into the training dataset and the newly trained network was tested at multiple levels. Among the four network models, ResNet-50 excelled in performance in both multi-level testing and continuous learning, the latter of which enhanced the accuracy of the most challenging classification task (i.e., 3-class with outbox test images) from 60.65% to 98.92%. The datasets can serve as a benchmark training/testing database for validating existent CNN models or quantifying the performance metrics of new CNN models.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3