Theoretical and Experimental Analysis on Influence of Natural Airflow on Spent Fuel Heat Removal in Dry Cask Storage

Author:

Ratiko RatikoORCID,Sumarbagiono Raden,Aisyah Aisyah,Wati Wati,Heriyanto Kuat,Mirawaty Mirawaty,Artiani Pungky Ayu,Purwanto Yuli,Saputra Dwi Luhur Ibnu,Rachmadetin JakaORCID,Setiawan Risdiyana,Istavara Arifin,Rauf Abdullah Ahmad

Abstract

A key issue contributing to the success of NPP technology is the safe handling of radioactive waste, particularly spent nuclear fuel. According to the IAEA safety standard, the spent fuel must be stored in interim wet storage for several years so the radiation and the decay heat of the spent fuel will decrease to the safe limit values, after which the spent fuel can be moved to dry storage. In this study, we performed a theoretical analysis of heat removal by natural convection airflow in spent nuclear fuel dry storage. The temperature difference between the air inside and outside dry storage produces an air density difference. The air density difference causes a pressure difference, which then generates natural airflow. The result of the theoretical analysis was validated with simulation software and experimental investigation using a reduced-scale dry storage prototype. The dry storage prototype consisted of a dry cask body and two canisters stacked to store materials testing reactor (MTR) spent fuel, which generates decay heat. The cask body had four air inlet vents on the bottom and four air outlet vents at the top. To simulate the decay heat from the spent fuel in the two canisters, the canisters were wrapped with an electric wire heater that was connected to a voltage regulator to adjust the heat power. The theoretical analysis results of this study are relatively consistent with the experimental results, with the mean relative deviation (MRD) values for the prediction of air velocity, the heat rate using natural airflow, and the heat rate using the thermal resistance network equation are +0.76, −23.69, and −29.54%, respectively.

Funder

The Ministry of Research and Higher Education of Indonesia under the PPTI 2021 Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3