A Quantitative Approach for the Bone-implant Osseointegration Assessment Based on Ultrasonic Elastic Guided Waves

Author:

Vien Benjamin Steven,Chiu Wing Kong,Russ Matthias,Fitzgerald Mark

Abstract

Quantitative and reliable monitoring of osseointegration will help further evaluate the integrity of the orthopaedic construct to promote novel prosthesis design and allow early mobilisation. Quantitative assessment of the degree or the lack of osseointegration is important for the clinical management with the introduction of prosthetic implants to amputees. Acousto-ultrasonic wave propagation has been used in structural health monitoring as well as human health monitoring but so far has not extended to osseointegrated implants or prostheses. This paper presents an ultrasonic guided wave approach to assess the osseointegration of a novel implant. This study explores the potential of integrating structural health monitoring concepts into a new osseointegrated implant. The aim is to demonstrate the extension of acousto-ultrasonic techniques, which have been widely reported for the structural health monitoring of engineering structures, to assess the state of osseointegration of a bone and implant. To illustrate this potential, this paper will report on the experimental findings which investigated the unification of an aluminium implant and bone-like geometry surrogate. The core of the test specimen is filled with silicone and wrapped with plasticine to simulate the highly damped cancellous bone and soft tissue, respectively. To simulate the osseointegration process, a 2-h adhesive epoxy is used to bond the surrogate implant and a bone-like structure. A series of piezoelectric elements are bonded onto the surrogate implant to serve as actuators and sensors. The actuating piezoelectric element on an extramedullary strut is excited with a 1 MHz pulse signal. The reception of the ultrasonic wave by the sensing elements located on the adjacent and furthest struts is used to assess the integration of this implant to the parent bone structure. The study shows an Osseointegration Index can be formulated by using engineering and acousto-ultrasonic methods to measure the unification of a bone and implant. This also highlights a potential quantitative evaluation technique regardless of bone-implant geometry and soft tissue damping.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3