Documenting the Evolution of a Southern California Coastal Lagoon during the Late Holocene

Author:

Dickson Sarah,Carlin JosephORCID,Bonuso Nicole,Kirby Matthew E.

Abstract

Coastal wetlands are declining globally, and although wetland restoration looks to offset these losses, its success relies on anticipating environmental response to external forces. The purpose of this study is to investigate the sedimentological record of Los Peñasquitos Lagoon to determine the processes that drive environmental transitions in a Southern California coastal wetland. For this project, we analyze three sediment cores from the wetland for grain size, total organic matter, and shell assemblages to reconstruct environmental change over the past ~4000 years. From the results, we find that the lagoon was initially an open embayment that persisted for >2000 years; however, at ~1000 cal yrs BP, a short-lived wet climatic period triggered a fluvial deltaic progradation at the head of the lagoon. As the wet period ended and drier conditions returned, the delta began to retreat, and the lagoon infilled as the estuarine mouth bar was permanently established. The permanent establishment of the mouth bar resulted in a transition to a marsh-dominated environment throughout the wetland. Ultimately, these environmental transitions were driven by climate variability, although evidence of human impacts was observed more recently in the record. Therefore, future restoration efforts must consider both natural climatic variability and anthropogenic influences if they intend to sustain coastal wetlands.

Funder

California State University Fullerton

Publisher

MDPI AG

Reference98 articles.

1. Protecting America’s Wetlands: An Action Agenda;Kean,1988

2. Urbanization impacts on the structure and function of forested wetlands

3. In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs;Wells,2006

4. Flow hydrodynamics in tidal marsh canopies

5. Valuing ecosystem services as productive inputs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3