Effect of Cultivable Bacteria and Fungi on the Limestone Weathering Used in Historical Buildings

Author:

Balland-Bolou-Bi Clarisse1ORCID,Saheb Mandana2,Alphonse Vanessa1,Livet Alexandre1,Reboah Paloma12,Abbad-Andaloussi Samir1,Verney-Carron Aurélie2ORCID

Affiliation:

1. Univ Paris-Est Creteil, Laboratoire Eau, Environnement et Systèmes Urbains (LEESU), Ecole des Ponts, Val de Marne, 94010 Créteil, France

2. Univ Paris Est Creteil and Université Paris Cité, CNRS, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), 94010 Créteil, France

Abstract

Limestone buildings in urban areas are weathered due to climatic factors, to pollution but also to biological activity. Many studies have focused on microbially-mediated precipitation of calcite but few on their influence on limestone dissolution rates. In this study, a cultivable approach for studying bacterial dissolution of limestone is proposed. The results show, for the first time, that limestone has selected a specific structure in the bacterial communities and that each bacterial class has its own metabolism inducing a different efficiency on the alteration of limestone grains. Cultivable bacterial and fungal strains in our study permit to considerably increase (by 100 to 1,000,000 times) the chemical weathering rates compared to laboratory or field experiments. Individually, the results bring information on the ability to alter limestone by dissolution. Moreover, taken together, a functional ecological adaptation of bacterial and fungal classes to the alteration of the limestone monument has been highlighted. In order to release calcium into solution, these strains slightly acidify the medium and produce low molecular mass organic acids during experiments, especially lactic and oxalic acids.

Funder

French National Research Agency

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3